Bruises, Dots and Spots
Deena Brecher RN, MSN
Clinical Nurse Specialist
Emergency Department

Objectives
- Describe the difference between petechiae and purpura
- Identify signs and symptoms of life threatening illnesses
- Identify three diseases that present with similar symptoms

Imagine this…
- You are working in a very busy emergency department
- All the beds are full, including hallway beds
- A dad walks into triage carrying his 8 year old son, who has his head buried in dad’s shoulder
- You immediately notice the patient has petechiae and purpura on both lower extremities
- What do you do?

A few assumptions…
- All pediatric patients who present to triage with petechiae and purpura should be assumed to be high risk
- NOT debating that
- Provide tools to enhance your decision making and assessment skills
- Let’s start with a few definitions…

Petechiae
- Minute 1-2mm hemorrhages in the skin or mucous membranes
- Usually associated with
 - Locally increased intravascular pressure
 - ie: blood pressure measurement
 - Tourniquet placement
 - Decreased platelets
 - Thrombocytopenia
 - Defective platelet function
 - Uremia
 - Clotting factor deficiencies

Where oh where are the dots?
- Distribution very important
- Face and neck
 - Seen in the presence of forceful coughing or vomiting
 - Very likely benign
- Above the nipple line
– Same as face and neck

Wide distribution
– With fever...highly suspicious of serious bacterial infection

Purpura
- **Greater than or equal to 3mm hemorrhage**
- **Causes include**
 – All of the causes for petechiae
 – Trauma
 – Local vascular inflammation
 - vasculitis
 – Increased vascular fragility
 - amyloidosis

Is it a bruise or something worse...the blanch test
- **Areas of erythema can be distinguished by whether or not they blanch**
 – Erythema is caused by increased blood flow to the area
 - Pressure will momentarily empty the vessels, causing the blanching
 – Petechiae and purpura caused by blood leaking into the tissue spaces
 - Pressure will not cause blanching

Thrombocytes (platelets)
- Disk shaped
- Necessary for clot formation
- Produced by megakaryocytes in the bone marrow
- Rate of production constant throughout life
- Life span 7 to 10 days
- Activated by damage to the blood vessel wall
- 150,000 to 400,000 mm3 considered normal

Thrombocytopenia
- **Low platelet count that results from either**
 – Excessive destruction
 – Inadequate production
- **Platelet count less than 100,000 mm3**
- **Spontaneous bleeding occurs when platelet count is less than 20,000 mm3**

Inadequate Production
- **Bone marrow failure**
 – Aplastic anemia
- **Bone marrow replacement**
- **Congenital amegakaryocytosis**
- Bone marrow suppression
 - Chemotherapy
 - Radiotherapy

Excessive Destruction
- Idiopathic thrombocytopenia (ITP)
- Disseminated intravascular coagulation (DIC)
- Thrombotic thrombocytopenia (TTP)
- Collagen vascular diseases
- Hemolytic-uremia syndrome (HUS)
- Toxins
- Drugs

Differential Diagnosis of a Child Who Presents With Petechiae Or Purpura
- Meningococcemia
- HSP
- Idiopathic Thrombocytopenia
- Rocky Mountain Spotted Fever
- Leukemia

Meningococcemia
- A rapidly progressing sepsis that may or may not involve meningitis
- Causative organism
 - Neisseria meningiditis
 - Gram negative diplococcus
- Incidence
 - As high as 7-11% in children with petechiae and fever

- May begin as a nonspecific febrile illness
- Rapid progression to multisystem organ failure and death if not quickly recognized and treated appropriately
- Most deaths occur within the first 48 hours of illness
- Fatality rates as high as 50%

Symptoms of Meningococcemia
- Initial nonspecific symptoms include
 - Fever
 - Headache
 - Myalgia
Abdominal pain
- Rash may also progress rapidly
 - Starts as macular, maculopapular or urticarial
 - Becomes petechiae and purpura
- Initial symptoms followed by signs of compensated and then uncompensated shock

Clinical Predictors of Poor Outcomes
- Young age
- Temperature less than 38°C
- Presence of coma on presentation
- Hypotension
- Leukopenia
- Thrombocytopenia
- Absence of meningitis

Workup and Treatment
- Consider meningococcemia in all children who present to the ED with fever and petechiae
- All ill appearing patients with petechiae and or purpura – assume and treat for overwhelming meningococcemia
- Blood cultures needed for definitive diagnosis, however DO NOT DELAY antibiotic administration
- PCR testing also helpful if possible
- CBC, CMP, PT/PTT, d-dimer

Henoch-Schönlein purpura (HSP)
- AKA
 - Allergic vasculitis
 - Allergic purpura
 - Anaphylactoid purpura
 - That disease with a German name
- Etiology unknown though often follows an upper respiratory infection
- Most frequently occurs in children ages 2 years to 11 years.
- Boys affected twice as often as girls

Pathophysiology
- Multi-system disorder
- Characterized by inflammation of small blood vessels
- The manifestations observed are influenced by the size and distribution of the affected vessels
- Extravasation of the red blood cells cause petechial lesions
- Involves the skin kidneys, GI tract, and central nervous system

Clinical Manifestations
- Primary feature
 - Symmetric purpura that involves buttocks and lower extremities
 - May also extend to include the extensor surfaces of the upper extremities
 - Infrequently see lesions on face and upper trunk as well
- Nonmigratory polyarthralgia
- Colicky abdominal pain
- Renal involvement

Diagnostic Workup and Treatment
- Rule out abdominal pathology
- Evaluate renal function
 - Check urine for protein and blood
- Based on clinical findings
- Normal CBC
- Normal platelets and complement level

Idiopathic Thrombocytopenic Purpura
- Idiopathic – cause unknown
- Thrombocytopenia – destruction of platelets
- Purpura - >3mm hemorrhages under the skin
- Believed to be an autoimmune response to disease related antigens
- Most frequently occurring thrombocytopenia of childhood
- Incidence of 4 in 100,000 children

Acute vs. Chronic ITP
- Acute form
 - Most commonly seen after
 - URI
 - Childhood diseases
 - Self limiting
 - Hemorrhagic phase lasts 1-2 weeks with resolution by 6-12 months
- Chronic ITP
 - Affects females greater than 10yrs most commonly
 - Usually associated with another immunologic dysfunction
 - Lupus
 - IgA deficiency
 - Malignancy

Clinical Manifestations
- Easy bruising
 - With petechiae
- Over bony prominences
- **Bleeding from mucous membranes**
 - Epistaxis
 - Bleeding bums
 - Internal hemorrhage
- **Hematomas on lower extremities**

ED Treatment
- Assess for and treat shock
- Anticipate and facilitate lab studies
 - CBC with diff and platelets
 - Platelets less than 20,000/mm³
- **Most of the time care is supportive**

Discharge instructions should include:
- Direction for the parents to observe for
 - Bloody stools
 - Abdominal distention
 - CNS changes
- Avoid medications that can affect platelets
 - Aspirin, ibuprofen, guaifenesin
- **No contact sports**
- Follow up with hematologist

Rocky Mountain Spotted Fever
- Let’s start with a bit of history…
- First tick-borne infestation in North America to be recognized
 - Discovered in 1908
 - American pathologist Howard T. Ricketts
- **Rickettsia rickettsii**

Epidemiology
- **Occurs throughout**
 - North America
 - United States, Canada and Mexico
 - Central America
 - Costa Rica, Panama
 - South America
 - Bolivia, Brazil, and Columbia
- **Varies widely by geographic region**
 - Prevalent in North and South Carolina, Virginia, Oklahoma, Arkansas, and Tennessee
Incidence
- 1997-2002 in the United States
 - Estimated to be 2.2 cases per million persons
- Incidence varies greatly from year to year
- Actual incidence may be greater than surveillance data suggests
- Highest in late spring and early summer
- Groups most often affected
 - Children less than 10 years of age
 - Men
 - Caucasians
- Fatalities and severe disease most often seen
 - Patients greater than 40 years of age
 - African Americans

Transmission
- Humans are “accidental” hosts of R rickettsii
- Role of domesticated animals
- Three different vectors
 - American dog tick (Dermacentor variabilis)
 - Rocky Mountain wood tick (Dermacentor andersoni)
 - Brown dog tick (Rhipicephalus sanguineus)
- Infection has also been associated with
 - Tick removal
 - Contact with infected tissue
 - Blood transfusions
 - Needle stick injuries

Clinical Features
- Variable incubation period
 - 2 days to 2 weeks
- Early phase of illness
 - Nonspecific symptoms
 - Fever, malaise, aching, chills and headache
 - May mimic many other viral and bacterial illnesses
 - These symptoms rarely lead to correct diagnosis
 - Up to 40% of patients do not recall being bitten by a tick
 - Painless
 - Location
- Classic clinical triad
 - Fever
 - Headache
 - Rash
- Less than 5% of patients experience this within the first 3 days of illness
- 60-70% have these symptoms by the second week of exposure

- **Fever**
 - Almost always present
 - Often greater than 38.9°C (102°F)

- **Headache**
 - Most often present in adult patients
 - Typically severe

- **Additional symptoms**
 - Myalgias
 - Generalized malaise
 - Anorexia

Rash of RMSF
- Variable in presentation
- Often absent in the early phase of disease
- Most develop between day 3 and day 5
- Begins as blanching and nonpruritic macular rash
- Progresses to papular
- Petechiae may also occur

Classic RMSF Rash
- Centripetal progression
- Starts on wrists and ankles
 - Blanching macules
 - Spreads centrally to arms, legs, trunk and face
 - Evolves to nonblanching petechiae and purpura
 - Can involve palms of hands and soles of feet
- May be absent in up to 20% of cases

Diagnosis
- Unpredictability of symptoms can make diagnosis difficult
- Based upon probability that clinical features can represent RMSF in the correct setting
- Should be included in differential dx when
 - Pt is acutely ill with fever
 - Resides in endemic region
- Often confused with several different diagnoses

Laboratory Findings Consistent With RMSF
- Hyponatremia
 - Up to half of all cases
- **Thrombocytopenia**
 - Occurs in most patients
 - Result of platelet sequestration and destruction in microcirculation
 - Can be a critical clue
- **May also see**
 - Elevated liver enzymes
 - CSF pleocytosis
- **Serological testing**

Treatment
- Based solely on clinical suspicion
- Therapy MUST be started before laboratory confirmation is obtained
- **Drug of choice**
 - Doxycycline
 - 2mg/kg per dose up to 100mg per dose twice daily
 - Treat for 7-10 days or until fever free for three days

Clinical Outcome
- Overall case fatality rate as high as 7%
- Higher risk for adverse outcome
 - Pre-existing G6PD deficiency
 - Males and those greater than 40 years of age
 - Lab evidence of renal or hepatic impairment
 - Children under 4 years of age
- **Patients who receive prompt antibiotic therapy have better outcomes**
- **Can experience some long-term sequelae**
 - Hearing loss, paraparesis, motor, vestibular and cerebellar dysfunction

Childhood Leukemia
- Approximately 3250 new cases diagnoses annually in the United States
- Acute leukemias account for about 30% of all malignancies in children less than 15 years of age
- Believed to arise from genetic alterations in hematopoietic progenitor cells
- **Classified as one of three different types**
 - Acute lymphoblastic leukemia
 - Acute myeloid leukemia
 - Chronic myeloid leukemia

Acute Lymphoblastic Leukemia
- Accounts for about 80% of new cases each year
- Sharp peak in incidence among 2-3 year olds
- Survival rate approximately 75-80%
- 3 major subtypes
 - B-precursor (70-80% of patients)
 - Mature B cell (2-5% of patients)
 - T cell (15% of patients)

Acute and Chronic Myeloid Leukemia
- AML accounts for about 20% of new cases per year (800-900 cases)
- CML accounts for 1% of new cases per year
- Rates are highest in the first 2 years of life
 - Decrease at around 9 years of age
 - Slowly increase again during adolescence
- 50-60% achieve long term survival

Prognostic Features in Childhood Leukemia
- ALL
 - **Favorable**
 - > 1 or < 10 years old
 - WBC < 50,000
 - B-precursor
 - **Unfavorable**
 - < 1yr or > 10 yrs old
 - WBC > 50,000
 - T-cell

Diagnosis
- **Classic Presentation**
 - Symptoms of pancytopenia
 - Pallor and fatigue
 - Ecchymoses
 - Petechiae due to thrombocytopenia
 - 75% have platelet count < 100,000/uL at diagnosis
 - White Blood Cell count
 - May be elevated (>50,000/uL in 20%)
 - More commonly low (<10,000 in 50%)
 - Lymphadenopathy
 - Bone pain

Additional Signs and Symptoms
- Significant infection or overwhelming sepsis
 - Seen in patients who are neutropenic
- **Cough or other respiratory symptoms**
 - Associated with mediastinal masses
 - Usually associated with T-cell ALL
- **Headache or cranial nerve abnormalities**
 - Leukemia within the CNS
- Uncommon presentations
 - Isolated testicular mass (ALL)
 - Soft-tissue mass (AML)

Not always an acute presentation
- Presenting signs and symptoms may be subtle
- Develop over weeks to months
- Often begin with fatigue and decreased energy
- May develop persistent or intermittent fevers
- Unexplained lymphadenopathy or hepatosplenomegaly on exam
- Diagnosis may take weeks or months

Evaluation
- CBC
- Chemistry panel
 - Hepatic or renal dysfunction
 - Tumor lysis syndrome
 - Elevated uric acid, K+, phosphate
- PT/PTT
- CXR
- Physical exam for signs of infection
- Bone marrow aspiration required for definitive diagnosis

Treatment
- Vast majority treated as part of a clinical trial
- Treatment based upon type of leukemia, age of patient and presenting symptoms
- Usually lasts between 24-36 months
- Divided into treatment phases
 - Remission induction
 - Consolidation and delayed intensification
 - Maintenance

Ok...So Now What?
- How does all of this help me?
- What are the “signs” that will point me in the right direction?
- Are there any good questions to ask?

The Nurse Detective
- Remember that pediatric patients are great “little fakers”
 - They compensate well
 - Early signs of trouble are subtle and easy to miss
- **Assess your patient first**
 - If sepsis is likely, treat your patient as if they had meningococcemia
– Treat the worst, hope for the best

- Patients who have leukemia have more than one cell line affected
 – Children with petechiae and PALLOR
 – Thrombocytopenia and ANEMIA
- Patients with HSP will more than likely have purpura to DEPENDENT areas
 – Legs, buttocks, arms
 – Absent above the waist
- ITP impacts platelets only
 – Petechiae and/or purpura with NORMAL skin color

Questions to Guide Your History Taking
- How long have symptoms been present?
 – Short duration – think infection
 – Longer duration – think noninfectious cause
- Exposure?
 – Tick bites
 – Others in the home sick?
- How did the rash develop?
 – Wrists and ankles towards center
 – Legs, buttocks, arms
 – Bruises and petechiae

Let’s review our patient
- Your patient presents with petechiae and purpura to lower extremities
- What history do you want to obtain?
- What do you want to include in your physical exam?
- This patient likely has...

In summary
- Children who present with petechiae and purpura range from the not so sick to the very sick
- Always assume the worst when evaluating and treating your patient
- Good assessment skills can help differentiate between several different diagnoses
- Honing these skills provides the nurse the skills they need to anticipate complications and prepare patients and families for the road ahead

Questions?
References