The Post-Discharge Car Seat Challenge: An Investigation of Utilization and Feasibility

Rachael L. Haupt-Harrington

Assuring the safe transportation of infants is a well-known requirement at the time of hospital discharge, and consequently, medically fragile and/or premature infants generally undergo a car seat challenge to ensure they are physiologically ready to travel in a rear-facing car seat. Most tested (or challenged) infants will travel home from the hospital in a properly fitted car seat; however, because some infants are unable to maintain a patent airway in the semi-reclined position of a car seat, they must instead travel home in a recumbent car bed. Infants that initially fail the car seat challenge should undergo an additional car seat challenge prior to transitioning to a traditional, semi-reclined car seat. Although pre-discharge challenges are performed at the author’s local hospital on an as-needed basis, there was no locally accessible option for car seat challenges to occur after hospital discharge. To address this service gap, the author explored the feasibility, utilization, and potential implementation of a program to provide post-discharge car seat challenges using Kotter’s Change Management Model as a guide for program development. Informed by the evidence and study findings, the local clinic subsequently adopted a post-discharge car seat challenge program into current practice.

Key Words: Car seat, car seat challenge, airway, infant transportation.

Rholdon, 2017; Tonkin et al., 2006).

To ensure newborn infants can travel safely in a rear-facing car seat, the AAP recommends that premature infants and infants with a history of supplemental oxygen use, adverse cardiopulmonary events, and/or pre-existing neuromuscular or cardiopulmonary conditions undergo a car seat challenge prior to hospital discharge (see Table 2). However, some research groups question the accuracy of the car seat challenge to identify infants at risk for adverse cardiopulmonary effects in response to body position in a car seat (Arya et al., 2017; Bull & Engle, 2009; Greenberg, 2007; Narvey, 2016; Schutzman et al., 2013; Wilker, Coton, Miranda, & Bass, 2014).

Clinical factors potentially associated with infant car seat challenge failure include low birth weight, small for gestational age, weight at time of challenge, hospitalization more than one week, and history of respiratory support, but seemingly healthy premature infants with these characteristics can also experience adverse cardiopulmonary effects during a car seat challenge (Arya et al., 2017; Davis, Condon, & Rhein, 2013; Davis, Gregory, & Rhein, 2014; DeGrazia, Guo, Wilkinson, & Rhein, 2010; Schutzman et al., 2013; Smith, Mohamed, Young, Jefferies, & Shah, 2016; Wilker et al., 2014). Therefore, until further research studies definitively identify infants at risk for adverse cardiopulmonary effects in response to body position in a car seat, administering car seat challenges for premature infants and/or infants with known or suspected medical conditions that could potentially impact cardiopulmonary function is an accepted screening practice that suggests an infant is able to physiologically tolerate sitting in a semi-upright position.
Table 1.
Child Passenger Safety Recommendations for Parents and Caregivers

- Whenever possible, have someone ride in the backseat with the infant to observe the infant directly while in his or her car seat.
- Use car seats for travel only. Do not allow the infant to remain in the car seat when not travelling (do not allow the infant to sleep or rest in the car seat after arriving at the destination).
- Limit the duration of travel to two hours, stopping for an ‘out-of-the-car-seat break’ at or prior to that time.
- Limit the use of infant swings, seats, and wraps. When such devices are in use, monitor the infant closely.
- Maintain the infant in a rear-facing position up to and beyond two years of age, and/or to the limits of the child restraint. While this is recognized as the safest and best practice, unfortunately and frequently, state laws require far less stringent practices. Infants are significantly better protected while they are rear-facing.
- Children under age 12 years should ride in the back seat whenever possible.
- Utilize your resources around child passenger safety:
 - Talk with your healthcare provider about their recommendations about when to transition your child into their next car seat (from rear-facing, to forward-facing, to booster).
 - Read your car seat and vehicle manuals prior to installing or making changes to a car seat.
 - Find a certified child passenger safety technician (CPST) in your community. Visit safekids.org for help in finding these local resources. CPSTs are specially trained individuals who are available to inspect and make recommendations for safer car seat installations, assist with the timing of transitions, and much more.

Table 2.
Pre-Discharge Car Seat Challenge Criteria

- Born at less than 37 weeks.
- Weighs less than 6 pounds at discharge.
- History of apnea, bradycardia, and/or oxygen desaturation.
- Medical condition that places them at risk for apnea, bradycardia, and/or oxygen desaturation when seated in a semi-upright position.
- Discharged home on oxygen therapy and/or with chronic lung disease, or supplemental oxygen has been discontinued for less than one week.
- Per physician or nursing discretion.

Source: Based on Bull & Engle, 2009.

color, oxygen desaturation to less than 80% to 93%, hypo- or hyperventilation, apnea, and/or decreased heart rate over a set duration (adverse cardiorespiratory changes greater than 20 seconds) depending on clinical practice; the AAP does not provide pass-fail criteria for the car seat challenge (Bass, 2010; Davis et al., 2013; Wilker et al., 2014; Williams & Martin, 2003). Infants that fail the car seat challenge generally travel in a recumbent position in a car bed and are not to be placed in any equipment that positions them in an upright or semi-reclined position, such as infant swings, bouncy seats, slings, and car-

triers, until they are physiologically ready to maintain this position for the duration of the car seat challenge (Bull & Engle, 2009; Wilker et al., 2014; Williams & Martin, 2003). The AAP recommends that infants who fail their pre-discharge car seat challenge be challenged once more prior to transitioning from the recumbent car bed to a semi-reclined car seat (Bull & Engle, 2009). However, no specific guidelines exist for healthcare providers to administer car seat challenges to infants who failed their pre-discharge car seat challenge, so infants may not undergo a second car seat challenge before they are transitioned to a traditional car seat.

To address this gap in service, the author designed and implemented a healthcare organization-based pilot program for post-discharge car seat challenges using Kotter’s Change Model as a guide (Kotter, 1995; Kotter & Cohen, 2002). Program feasibility, barriers, and facilitators to program establishment were assessed via surveys disseminated to nursing staff.

Pilot Program Development and Implementation

Current State of Car Seat Challenges in the Community

The author’s hospital is a recognized children’s hospital in the Midwest, and staff at this facility administer pre-discharge challenges per the hospital’s policy on safely transporting infants developed using AAP guidelines (see Table 3) (Bull & Engle, 2009).

Of the 1,200 to 1,400 infants discharged from this hospital’s obstetric and neonatal intensive care units per year (100 to 120 infants monthly), at the time of the pilot program, an average of 10 infants (8% to 10%) per month fail their car seat challenge and are provided a car bed for travel (R. Watt, personal communication, November 2014). Hospital staff instruct parents of infants discharged home in a car bed to discuss the transition from a car bed to a car seat with their healthcare provider. However, without the option of a post-discharge car seat challenge, providers often determined subjectively when the infant should transition to a traditional car seat. Providers might decide to transition infants once they reach a certain age or weight, or transition infants per parent request or conven-
Table 3.
Recommendations for Assessing Infant Transportation

- Car safety seat (CSS) should have a 5-point harness, and a minimal gap between the infant and crotch strap. CSS harness straps should be at or below the infant’s shoulders.
- Apply cardiorespiratory and pulse oximetry monitors. Set monitor alarms per MD order or facility.
- Obtain and record baseline vital signs (before placing infant in car seat).
- Place and secure infant appropriately in CSS.
- Place CSS on stable surface and adjust the seat to correct angle of travel according to car seat manufacturer.
- Assess infant’s fit in the CSS:
 - Infant’s buttocks and back should be flat against the back of CSS.
 - Harness straps should be snug. Ensure hip straps snug on the infant’s hips when tightening harness.
 - Ensure shoulder straps are snug (should not be able to pinch up any excess harness webbing at the infant's shoulders).
- Maintain continuous monitoring for the duration of the car seat challenge. Do not leave the infant alone during the challenge.
- Record vital signs initially in CSS and periodically during testing time.
- If the infant has an apneic, bradycardic, or oxygen desaturation event that requires stimulation, the infant is removed from the CSS immediately, and it is documented that the infant did not pass the challenge. Any other events that occur during the CSS that may be of concern should be reviewed by the physician.
- During and upon completion of the challenge, document observations and results. Remove the infant from the CSS at the end of the challenge.
- Additional important points:
 - Only products that come with the seat or sold by the manufacturer for use with their specific seat should be used. Do not use any non-regulated or aftermarket products.
 - A small rolled cloth diaper may be added between the crotch strap and the infant to reduce submarining and/or slouching.
 - Blanket rolls may be placed on both sides of the infant to provide lateral support for the head and neck. Nothing should be placed under or behind the infant.

ience. At other times, the parent or provider would contact the hospital to request another car seat challenge and were informed by staff that the facility did not perform post-discharge challenges.

As a seasoned NICU nurse manager, the author identified this unfortunate gap in service and proposed the development of a post-discharge car seat challenge program in the local community. The goal of this program was to provide post-discharge car seat challenges for infants who previously failed their car seat challenge prior to transitioning from a car bed into a traditional car seat.

Approval

This feasibility assessment study was approved by the Institutional Review Board (IRB) of the University of Wisconsin – Eau Claire and regional medical center as a project to develop a pilot program to assess the feasibility and acceptability of a post-discharge car seat challenge program at a local healthcare facility.

Stakeholder Engagement

To ensure the investment and involvement of all stakeholders in the pilot program, the author met with pediatricians, managers of infant-associated departments, and hospital leadership to describe the clinical significance of the problem, identify critical gaps in service, and propose solutions. With leadership support for the project, the author gathered information on current internal and external resources associated with infant car seat safety, including healthcare providers, healthcare system administration, and the local chapter of the Safe Kids Coalition (an international organization dedicated to child safety). Individuals interested in participating in program development were identified as project champions.

Selection of Location

For Future Program Implementation

During the initial survey of locally available resources for a future post-discharge car seat challenge program, the author identified several organizations that had some of the necessary infrastructure, personnel, equipment, and experience to implement such a program. These organizations and institutions included the local public health department, a community home health agency with a car bed rental program, hospital, and clinic. Of these options, both the hospital and clinic possessed many of the resources necessary for administering post-discharge car seat challenges.

Because the hospital possessed the necessary equipment, trained personnel, infrastructure, and experience to perform car seat challenges, this facility was selected as the pilot location for this program. However, the hospital was not an ideal long-term solution because all existing processes and policies focused on admitted inpatients and did not include provisions for outpatient infant care. Furthermore, infection control practices in the nursery and NICU prevented unit staff from providing care to a previously discharged infant in common hospital unit spaces; a previously discharged infant could not be re-admitted to either of these units to be challenged. As a result, the pilot’s post-discharge challenges occurred in an ‘off-unit’ single room environment at the hospital.

Although the hospital’s obstetric and neonatal intensive care units were integral to implementing the pilot program, it became apparent during development that the post-discharge challenge program was more appropriately aligned with outpatient services and processes. Fortunately, management from the clinic organization was interested in potentially adopting the post-discharge car seat challenge program into current practice. Because the clinic is a key player in regional pediatric health care with centralized scheduling and multiple facilities, it had the resources and infrastructure available for implementing a pilot post-discharge car seat challenge program but lacked
Table 4.
Cost Considerations for the Facility

<table>
<thead>
<tr>
<th>Direct Care Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Staff RN time to prepare for and complete challenge.</td>
</tr>
<tr>
<td>• Provider interpretation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indirect and Equipment Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Scheduling/appointing staff time.</td>
</tr>
<tr>
<td>• Physical space (exam room or alternate space).</td>
</tr>
<tr>
<td>• Overhead costs.</td>
</tr>
<tr>
<td>• Portable cardiorespiratory and oxygen saturation monitors.</td>
</tr>
<tr>
<td>• Networked laptop.</td>
</tr>
<tr>
<td>• Start-up disposables and consumables (monitor leads, printing).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Car seats – Required for challenge. Parents may provide this, but a car seat is available if parent desires to purchase seat or if the intended seat is expired or damaged.</td>
</tr>
<tr>
<td>• Car bed costs – Purchase vs. rental program. Upfront cost if purchased (parent or facility). If rental program, increased charges if extended rental due to a failed challenge. Rental program through local durable medical equipment company benefits included timely availability and less cost to family (vs. purchase) if for short-term use.</td>
</tr>
</tbody>
</table>

The pilot program was executed at the hospital to develop a programmatic workflow but was incorporated as a full-scale program at the clinic.

Addressing Financial Barriers

Two current procedural terminology (CPT) codes (94780 and 94781) were developed by the AAP and are associated with car seat and car bed challenge procedures (American Association for Respiratory Care [AARC], 2017; Franks & Dolan, 2011). CPT 94780 is entitled, Car Seat/Bed Testing for Airway Integrity, Neonate, with Continuous Nursing Observation and Continuous Recording of Pulse Oximetry, Heart Rate and Respiratory Rate, with Interpretation and Report; CPT 94781 is used to account for each additional 30 minutes beyond the initial 60-minute test associated with CPT 94780 (AARC, 2017; Franks & Dolan, 2011). Availability of these codes allows providers to perform and charge for car seat challenges. In addition, a cost assessment of the pilot program, including the necessary equipment and estimated staff resources, was completed and provided to leadership (see Table 4).

Staff Training

Obstetric and neonatal nursing staff underwent a training session to familiarize themselves with the AAP recommendation, practice implications, and the pilot program. Following the training and with consent, nurses completed a brief survey. The survey inquired about nurses’ knowledge of the AAP recommendation before and after the educational intervention, assessed their knowledge of post-discharge challenges, and their level of comfort in discussing AAP recommendations and the pilot program with families. Survey questions were also included to help identify barriers and tools or practices that nursing staff thought might support this work and its potential future implementation as a full-scale program (see Table 5).

Pilot Program Implementation

The pilot program was implemented over four months. Parents of infants who failed their pre-discharge challenge received a post-discharge car seat challenge information sheet from the discharging nurse describing the need for a post-discharge challenge, the nature of the pilot project, and the author’s contact information. During the allotted pilot program timeline, three families with infants who failed their pre-discharge car seat challenge consented to participate in the post-discharge challenge pilot program.

Post-Discharge Car Seat Challenge Procedure

The post-discharge car seat challenge pilot program procedure followed the local hospital’s policy for pre-discharge car seat challenges (see Table 3). Parents of infants who failed their pre-discharge car seat challenge previously contacted the author to schedule an appointment for a post-discharge car seat challenge with designated nursing staff at one to two months post-hospital discharge.

On arrival, the nurse administering the challenge collected demographic and challenge-specific information for the infant, including weight, length, and clinical indication for the challenge. The infant’s color, heart and respiratory rates, oxygen saturation via pulse oximetry, respiratory effort, and status were measured before, during, and after the challenge, and this information was recorded on an approved medical record form. Infants who failed the post-discharge car seat challenge would not transition to a car seat; instead, their time traveling in a recumbent car bed would be extended, pending further medical workup. Parents of infants who failed the post-discharge challenge would be instructed to schedule an appointment with the child’s medical provider.

Findings

Preliminary Post-Discharge Car Seat Challenge Results

All three infants participated in the pilot study and passed their post-discharge car seat challenge, which indicated these infants were, by the time of their post-discharge car seat challenge, able to maintain their airway physically and neurologically for the challenge duration. Information gleaned from retrospectively reviewing and studying data from additional completed challenges may help guide practice for future post-discharge car seat challenges. This includes identifying an optimal time after hospital discharge or establishing a corrected gestational age to help facilitate the scheduling and completion of post-discharge car seat challenges for eligible infants.

Provider Knowledge and Acceptability of the Post-Discharge Car Seat Challenge

Despite staff being very experienced (over half of the registered nurses had 20 or more years of NICU
experience), the AAP recommendation regarding the need for a post-discharge car seat challenge was not common knowledge. After the education and training session, nursing staff were more knowledgeable about the 2009 AAP recommendation and were more comfortable educating parents on the importance of post-discharge car seat challenge testing based on self-reports and post-training survey responses. Survey results indicated a significantly increased awareness of the AAP recommendation. Prior to training, 50% of respondents were not at all aware or minimally aware of the AAP recommendation, but after training, the percentages shifted to 25% of staff moderately aware and 75% of staff completely aware of the recommendations. Furthermore, when nurses were asked to rank their level of preparedness regarding parental education of the recommendation in the post-discussion survey, more than 90% reported they were moderately or completely prepared to do so.

In addition to increased knowledge and comfort level regarding the 2009 AAP recommendations, nursing staff identified several relevant barriers, as well as facilitators to aid potential implementation of a large-scale program. The primary barrier staff identified was time; facilitators included improved access and staff experience with car seat challenges (see Table 6). Allocating additional staff resources to this program may reduce the testing burden on workflows in participating departments.

Lessons Learned and Strategies Toward Future Program Implementation

Implementing new programs in a healthcare system requires stakeholder engagement and education, goal setting, resource allocation, communication, and assessment (Kotter, 1995; Kotter & Cohen, 2002). Alerting healthcare leadership to an unmet need in patient care and proposing potential solutions to the problem are the necessary first steps for program initiation and establishing stakeholder engagement among nursing staff, physicians, department management, and system leadership. Selecting key personnel with relevant experience, knowledge, and interest in the project, especially nursing staff and physicians, to assist with program development, and implementation is useful not only for program development and implementation but for information-gathering purposes as well. Key personnel provide important information on pre-existing healthcare system policies and procedures that may help or hinder program implementation and assist program manager(s) to establish the focus and scope of the proposed program. Project champions/key personnel also ensure

Table 5.
Nurse Car Seat Challenge Questionnaire

| 1. Prior to reviewing the information provided or participating in the discussion: |
| Rank your level of awareness around the American Academy of Pediatrics’ recommendations about having a car seat challenge performed prior to an infant transitioning from a car bed to a car seat. |
| Not at all aware | Minimally aware | Moderately aware | Completely aware |
| 2. After reviewing the information provided or participating in the discussion: |
| Rank your level of awareness around the American Academy of Pediatrics’ recommendation about having a car seat challenge performed prior to an infant transitioning from a car bed to a car seat. |
| Not at all aware | Minimally aware | Moderately aware | Completely aware |
| 3. After reviewing the information provided or participating in the discussion: |
| Rank your level of awareness around educating parents on the importance of having a car seat challenge performed prior to an infant transitioning from a car bed to a car seat. |
| Not at all aware | Minimally aware | Moderately aware | Completely aware |
| 4. Barriers: Please identify anything that you foresee that might negatively impact the future implementation of a Post-Discharge Challenge program here at MSJCH. |
| 5. Facilitators: Please identify anything that might positively impact your ability to promote Post-Discharge Challenges or support the provision of Post-Discharge Challenges. |

I have been a nurse for __X__ years.
0-10 | 11-20 | 21-30 | 31-40 | 40 or more
I am __X__ years old.
21-30 | 31-40 | 41-50 | 51-60 | 60 or more

Thank you for your participation in this important work – keeping our babies safe.
constancy of program implementation and identify problems as they arise. Once the core group is established, identifying and assessing resources, (organizations/institutions, infrastructure, staff, equipment, and time available for program implementation) is important to promote program development. A thorough resource assessment reduces the likelihood of service overlap among healthcare systems, public health departments, and local organizations, and promotes trust between program manager(s), nursing staff, physicians, department management, and system leadership. This assessment demonstrates the program manager has a working knowledge and understanding of current system processes and procedures that may be impacted by the establishment of a new program.

To maintain project momentum, consistency in program development and implementation, and to promote continued stakeholder engagement, frequent communication with key personnel, staff, management, and leadership is essential. Gathering feedback before, during, and after program implementation from project personnel is also important because it ensures that all individuals involved in or impacted by the new program have a say in the establishment and expansion of future program developments (promotes stakeholder buy-in) and identifies areas for program improvement. Further, preliminary assessments provide a framework for future refinements to the program.

By following these steps and with adequate support from all stakeholder groups, the author implemented a post-discharge car seat challenge pilot program at a large rural healthcare facility. As demonstrated by survey responses from nursing staff members involved in the post-discharge car seat challenge, providing education and training regarding car seat challenges improved their knowledge level of the 2009 AAP recommendations and promoted parent education regarding car seat challenges. Therefore, enhancing nursing staff knowledge of the car seat challenge in general can lead to increased parent education regarding the safe positioning and transport of infants. Following the presentation of pilot study results and lessons learned regarding the development, training, and implementation of a post-discharge car seat challenge to hospital and clinic leadership, a post-discharge car seat challenge program was adopted into the clinic system and is now offered as a standard-of-care procedure at the facility.

Limitations

Although initial findings are promising, the author acknowledges some intrinsic limitations to the pilot study. The duration of the pilot program was brief, which resulted in relatively few discharging infants available for potential study inclusion. The nursing staff survey was not disseminated before and after the pilot program training session, and as a result, survey responses cannot be analyzed as a true pre-/post-intervention survey. The survey was disseminated after the educational training session and included questions about the nurse’s knowledge prior to the educational intervention; therefore, the risk for recall bias was high. Although the number of infants analyzed in the pilot program was low, the overall goal of this work was to develop a process for implementing a clinic-based program for post-discharge car seat challenges, and use the information to inform and improve future implementation of a large-scale post-discharge car seat challenge program.

Conclusion

Assessing the safe transport and positioning of infants via the car seat challenge is an important routine pre-discharge procedure. Some challenged infants do not pass their pre-discharge challenge; therefore, it is important for providers to re-assess infants prior to transitioning them to a traditional car seat to help determine if infants are physiologically and developmentally ready to maintain their airway in a semi-reclined position for vehicular travel (Bull & Engle, 2009; Wilker et al., 2014; William & Martin, 2003). However, no specific guidelines have been developed for implementing a post-discharge car seat challenge program in healthcare systems, and minimal literature exists on the topic (DeGrazia, Guo et al., 2010; DeGrazia, Wilkinson, & Rhine, 2010). By highlighting the vulnerability of this population to stakeholder groups, identifying resources available for program implementation, and collaborating with key personnel, the author could execute a pilot program for administering post-discharge car seat challenges that was ultimately incorporated into standard-of-care procedures at several locations within the service region. It is the author’s hope that this article will prove useful to healthcare systems in other communities to incorporate the 2009 AAP recommendation regarding post-discharge car seat challenges into clinical practice.

Table 6. Nurse-Identified Barriers and Facilitators

<table>
<thead>
<tr>
<th>Barriers</th>
<th>Facilitators</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Time</td>
<td>• More times and sites available</td>
</tr>
<tr>
<td>• Cost to perform</td>
<td>• Unit’s existing experience with car seat safety and working with families</td>
</tr>
<tr>
<td>• Competence of staff to perform</td>
<td>• Availability of brochures with information about car bed versus car seat</td>
</tr>
<tr>
<td>• Lack of reasonable follow-up options if from outside the local community</td>
<td>• Increased staff training and education is beneficial for educating parents</td>
</tr>
<tr>
<td>• Location and travel distance for families</td>
<td>• Possible incentives for families (gas card to support travel costs)</td>
</tr>
<tr>
<td>• Limited access to and/or availability of challenges</td>
<td></td>
</tr>
<tr>
<td>• Keeping accurate records of those infants needing challenges</td>
<td></td>
</tr>
<tr>
<td>• Cost of gas (for family to return for challenge)</td>
<td></td>
</tr>
</tbody>
</table>

Source: Data compiled from Car Seat Challenge surveys completed by nurses at the author’s local hospital.
The author(s), editor, editorial board, content reviewers, and education director reported no actual or potential conflict of interest in relation to this continuing nursing education article.

This educational activity is provided by Anthony J. Jannetti, Inc.

Anthony J. Jannetti, Inc. is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center’s Commission on Accreditation.

Anthony J. Jannetti, Inc. is a provider approved by the California Board of Registered Nursing, provider number CEP 5387. Licensees in the state of California must retain this certificate for four years after the CNE activity is completed.

This article was reviewed and formatted for contact hour credit by Rosemarie Marmon, MSN, RN-BC, NE-BC, Anthony J. Jannetti, Inc. Education Director.

Instructions For Continuing Nursing Education Contact Hours

The Post-Discharge Car Seat Challenge: An Investigation of Utilization and Feasibility

Deadline for Submission: April 30, 2020

To Obtain CNE Contact Hours

1. To obtain CNE contact hours, you must read the article and complete the evaluation through the Pediatric Nursing website at www.pediatricnursing.net/ce

2. Evaluations must be completed online by April 30, 2020. Upon completion of the evaluation, your CNE certificate for 1.3 contact hour(s) will be mailed to you.

Learning Outcome

After completing this learning activity, the learner will be able to discuss a post-discharge infant car seat challenge program to ensure the safe transportation of infants.

Learning Engagement Activity

Visit The National Child Passenger Safety Certification page of the Safe Kids Worldwide website and review the resources available listed on the page (http://cert.safekids.org/resources-faq).

Fees — Subscriber: FREE Regular: $20

References

continued on page 80
Car Seat Challenge

continued from page 67

